
Omair A. Khan

Understanding Statistics

for Quality by Design

A T E C H N I C A L D O C U M E N T S E R I E S

West Pharmaceutical Services · Exton, Pennsylvania

July 31, 2015



Contents

PA RT I P R O C E S S D E S I G N A N D P E R F O R M A N C E

1 A Practical Guide to Utilizing Cp and Cpk 1

2 Confidence Intervals for Process Capability Indices 7

PA RT I I P R O D U C T D E S I G N A N D P E R F O R M A N C E

3 Statistical Procedures for Inter-Rater Reliability 11

4 Statistical Procedures for Testing Equivalence 15

i



Part I

Process Design and Performance



A Practical Guide to Utilizing Cp and Cpk

Omair A. Khan1

1 West Pharmaceutical Services,
R&D Statistical Engineering Intern
omair@prettynumbe.rsJune 19, 2015

This document explains the use of process capability indices as a way
to understand and improve manufacturing processes. It is intended to
be an empirical and pragmatic approach to capability analysis without
developing the underlying statistical theory. After reading this docu-
ment, the reader will have a strong grasp on the motivation for process
capability indices and what is needed to calculate them, focusing on Cp
and Cpk.

Why quantify capability?

The ability to manufacture a product within a customer’s specifica-
tions or tolerances is known as capability. Statistical process control
(SPC) is a methodology for achieving process stability and improving
capability through the reduction of variability. In any production pro-
cess, a certain amount of natural variability will always exist (chance
or common causes of variation). Occasionally, assignable or special
causes of variation can be present in the output of a process, aris-
ing from improperly adjusted machines, operators, or defective raw
material. This type of variability is usually large compared to natu-
ral variability and tends to suggest an unacceptable level of process
performance. A process that is operating with only chance causes of
variation is said to be in statistical control. Conversely, a process that
is operating under the presence of assignable causes is said to be an
out-of-control process.

Since process variation can never be totally eliminated, the control
of this variation is the key to product quality. Maintaining a stable
process average and systematically reducing process variation are the
keys to achieving superior quality. If process variation is controlled,
then a process becomes predictable. If predictability and consistency
are achieved, then a description of the capability of the process to
produce acceptable products is possible. A process capability index
is a statistical measure of process capability. These indices can be
used in the following ways:2 2 Deleryd M (1996)

1. As a basis in the improvement process.
2. As an alarm clock.
3. As specifications for investments. By giving specifications for

levels of process capability indices, expected to be reached by new
machines, the purchasing process is facilitated.

4. As a certificate for customers. The supplier is able to attach the
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result from the process capability studies conducted when the
actual products were produced, with the delivery.

5. As a basis for new constructions. By knowing the capability of the
production processes, the designer knows how to set reasonable
specifications in order to make the product manufacturable.

6. For control of maintenance efforts. By continuously conducting
process capability studies it is possible to see if some machines are
gradually deteriorating.

7. As specifications for introducing new products.
8. For assessing the reasonableness of customer demands.
9. For motivation of co-workers.
10. For deciding priorities in the improvement process.
11. As a base for inspection activities.
12. As a receipt for improvements.
13. For formulating quality improvement programs.

Process capability indices in practice

Cpk Sigma level Yield Fallout

0.33 1 68.27% 317311
0.67 2 95.45% 45500
1.00 3 99.73% 2700
1.33 4 99.99% 63
1.67 5 99.9999% 1
2.00 6 99.9999998% 0.002

Table 1: Relationship between Cpk and
non-conforming items (measured in
PPM).

SPC is primarily a method for monitoring process performance.
Many engineers believe that Cpk can be used to quantify product
quality. This is simply untrue. While Cpk can be used to calculate
process fallout (Table 1), the decision to accept or reject a production
lot of items must be made by acceptance sampling. Sampling plans
can be derived using a variety of statistical techniques but are com-
monly chosen by consulting tables outlined in ANSI/ASQ Z1.4 (for
attribute data) or ANSI/ASQ Z1.9 (for variables data).

Situation Minimum Capabilty

Existing Process
Regular 1.33
Critical 1.50

New Process
Regular 1.50
Critical 1.67

Six Sigma Process 2.00
Table 2: Recommended capability
values for two-sided specifications.

As mentioned above, the main goal of capability analysis is to help
reduce variability in the manufacturing process. Higher capability
indices generally correspond to higher profits as they imply fewer
non-conforming parts and better customer satisfaction. Table 2 con-
tains commonly used minimum values for a variety of processes.

Figure 1: Two processes with Cpk = 1.0
(Montgomery, 2009).

Finally, it is important to understand that Cpk does not give us the
whole picture. One of the disadvantages of Cpk is that it does not
take into consideration the target or nominal specification. Figure 1

illustrates how the same Cpk value can describe two very different
processes. For this reason, it is good practice not to base decisions
solely on the numerical value of a statistic, but also to graphically
visualize the data. Another way to address this difficulty is to use a
process capability index that is a better indicator of centering, such as
Cpm or Cpkm.
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How to calculate capability indices

While there are numerous process capability indices, the two that
are most commonly used in industry are Cp and Cpk. These random
variables are estimated with the following equations (note the use of
the hat to denote the estimate):

Ĉp =
USL � LSL

6ŝ

Ĉpk = min

"
USL � µ̂

3ŝ
,

µ̂ � LSL
3ŝ

#

where USL and LSL are the upper and lower specification limits
given by the customer, ŝ is the sample standard deviation (s), and It is recommended that standard

deviation be estimated as

s =

s
Ân

i=1(Xi � X̄)2

n � 1

rather than ŝ = R̄/d2. This second
equation is commonly used by Six
Sigma practitioners but is less statisti-
cally tractable than the first equation.

µ̂ is the sample mean (X̄). Cp estimates what the process is capable
of producing if the process mean were to be centered between the
specification limits. Many times, the mean is not exactly centered
and Cp overestimates the process capability. Cpk more accurately
quantifies capability in these cases and is generally used in place of
Cp regardless of the location of the process mean. Note that Cp = Cpk
when the mean is actually centered between the specification limits.

Verifying assumptions

In order to use Cp and Cpk properly, three main assumptions must be
verified:

1. The individual data must be normally distributed. Normality Data that deviates from normality can
sometimes be transformed to behave
better. In practice, one should instead
determine the cause for non-normality
if the data is expected to be normal (e.g.
dimensional data).

can be verified by visually inspecting a Q-Q plot or by using the
Anderson-Darling or Shapiro-Wilk tests.

2. The individual data must be independent (a particular observation
Xt cannot depend on a previous observation Xt�1). Independence
can be assumed if a plot of the data against the order it was col-
lected displays no obvious pattern. One can also use the Durbin-
Watson test for autocorrelation.

3. The process must be under statistical control, which is verified
using Shewart control charts. All data points (or subgroup aver-
ages) must fall in between the calculated control limits (not to be
confused with customer determined specification limits).

If any of these assumptions is not true, then the process capability
indices have absolutely no interpretive value!



a practical guide to utilizing cp and cpk 4

Determining how much to sample

Simulations have shown that one must have at least 30 samples in
order to estimate Cp or Cpk. The exact number needed is dependent
on the desired power and the type I error one is willing to tolerate.
One must also take into account the length of an operator’s shift and
the type of manufacturing process to determine the frequency of
sampling. OC (operating characteristic) curves are typically used
for these types of calculations. However, it is usually easier to use
the sampling plans tabulated in the aforementioned ANSI/ASQ
standards.

Using confidence intervals

Because in practice we must estimate Cpk with Ĉpk , the point esti-
mate is subject to a certain degree of error. If we would like to ensure
that our process has a Cpk of ck = 1.33, for example, our measured
Ĉpk must be higher. This value (the lower confidence bound) is a
function of the desired Cpk (ck), the sample size (n), and the probabil-
ity of type I error one is willing to tolerate (usually a = 0.05). Table 3

shows a few of these values for a variety of sample sizes.

ck 10 20 30 40 50 75 100 125 150
1.30 2.29 1.87 1.73 1.66 1.61 1.55 1.51 1.48 1.47

1.40 2.45 2.01 1.86 1.78 1.73 1.66 1.62 1.59 1.58

1.50 2.62 2.14 1.99 1.90 1.85 1.78 1.73 1.71 1.69

Table 3: The minimum value of Ĉpk
for which the process is considered
capable (i.e. Cpk � ck) 95% of the time.
(Adapted from Chou et al., 1990)

These values assume that the data were collected individually. When
rational subgrouping is employed, the required minimum value
of Ĉpk will be less than what is tabulated. The exact calculation is
beyond the scope of this document, and the reader is referred to
Scholz and Vangel (1998) for more details.

Final words: beware of statistical terrorism

Cp and Cpk can be extremely useful when used as part of a more This section is largely adapted from
Kotz and Lovelace (1998).comprehensive capability plan. However, these process capability

indices have a high potential to be misused. The result is often an
atmosphere of "statistical terrorism" within an organization. Burke et
al. (1991) define statistical terrorism as "the use (or misuse) of valid
statistical techniques along with threats and intimidation to achieve a
business objective, even if the objective may be reasonable." Below are
some examples of statistical terrorism that Burke et al. have outlined:

• "Bandwagon" terrorism. Customers require suppliers to commit to
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implementing SPC aggressively and may even demand a commit-
ment to a deadline date for SPC implementation, after which proof
of quality via control charts will be required with each shipment.
The result? Vendors ignore the statistical methodology and focus
on making attractive charts. The vendors simply won’t send out-
of-control charts to the customer, since they fear the material will
be rejected. In this case, statistical terrorism causes the vendor to
lie.

• "Russian roulette" terrorism. Vendors are contractually bound to
a specific quality criteria, measured statistically with Cp or Cpk
during a special qualification run. Because of the "random vari-
ability" of random variables, which include Cp or Cpk , sampling
variability may result in a calculated value of Cp or Cpk below the
specified minimum value, even if the process is truly capable. If
only a single estimate of Cp or Cpk is required, and the process is
exactly capable (say 1.33), there is a 50% chance that the estimate
will be below the minimum value. Without including confidence
limits, you are playing Russian roulette in terms of meeting their
requirements.

• "Tax audit" terrorism. The use of standards by large customer
companies forces vendors to estimate capability based on their
guidelines, which may not be appropriate, for example, with
non-normal data. The rigid standards deny the vendors the op-
portunity to understand their own processes and adjust estimation
techniques to match them. The consequences of not meeting the
standard may not be made clear, and these standards keep the im-
provement focus on the products, not the processes. The processes
have to be improved in order to improve the products.

• Other forms of terrorism. These include "self-inflicted wound" ter-
rorism, which results from extreme pressure that managers place
upon their own employees to achieve some statistical goal. There
is also "academy award" terrorism, which is the requirement that
an organization compete for some renowned quality award, inter-
nal or external. Finally, there is the "one true statistician" terrorism,
where an organization succumbs to the teachings of a specific
individual to the exclusion of any other perspective.

Burke et al. (1991) suggest that statistical terrorism may be coun-
tered in the same way as physical terrorism: by intelligence, speed,
and strength. The vendor should be intimately familiar with what
the customer needs in their products (intelligence). Statistical ex-
pertise should be developed in-house or be readily available from
a qualified outside source, so that quick statistical analysis requests
by the customer can be met accurately (speed). Finally, the strength
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of the quality program comes from knowledge, knowledge of your
own processes and how to statistically analyze them in an accurate
manner.
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This document introduces the use of confidence intervals for process
capability indices. We begin with a basic description of estimation
followed by various equations for calculating the interval for Cp and
Cpk. The final section describes a custom developed web application to
automate these calculations for West engineers.

Interval estimation

Process capability indices are most commonly reported as single
point estimates. The point estimates of Cp and Cpk are calculated as

Ĉp =
USL � LSL

6ŝ

and
Ĉpk = min


USL � µ̂

3ŝ
,

µ̂ � LSL
3ŝ

�
.

Due to the variability involved in sampling, this is not the most ac-
curate method for quantifying capability. When a process is exactly
capable, for example, there is a 50% chance that the estimate will be
below the minimum value.2 2 Khan OA (June 19, 2015). A Practical

Guide to Utilizing Cp and Cpk . West
Pharmaceutical Services Technical
Document.

A better estimate can be obtained by calculating the 100(1 � a)%
confidence interval of the process capability index. Here, a is the
probability of type I error one is willing to tolerate. The most com-
mon choice for a is 0.05, resulting in a 95% confidence interval. This Note that it is not entirely correct to

say that there is a 95% chance that the
population parameter lies within the
interval.

is interpreted as follows: if repeated samples are taken and the 95%
confidence interval is computed for each sample, 95% of the intervals
will contain the true population parameter. Higher confidence levels
correspond to wider intervals.

Confidence interval for Cp

Assuming normally distributed process data, Ĉp follows a chi-square
distribution. A 100(1 � a)% confidence interval for Cp is simple to
calculate using Equation 1 (Kane, 1986):

Ĉp

s
c2

a/2,n�1
n � 1

 Cp  Ĉp

s
c2

1�a/2,n�1
n � 1

(1)
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Confidence interval for Cpk

The construction of confidence intervals for Cpk is difficult to ob-
tain because the distribution involves the joint distribution of two
non-central t-distributed random variables. Several authors have pro- The interested reader is referred to

Pearn and Lin (2004) for the exact
derivation of the cumulative distribu-
tion function of Ĉpk .

posed approximate confidence intervals based on various arguments.
No single equation is considered best in practice (Kotz & Lovelace,
1998). Four equations are included in this section.

Heavlin (1988)

Cpk = Ĉpk ± Z1�a/2

vuut n � 1
9n(n � 3)

+
Ĉ2

pk

2(n � 3)

✓
1 +

6
n � 1

◆
(2)

Bissell (1990)

Cpk = Ĉpk ± Z1�a/2

vuut 1
9n

+
Ĉ2

pk

2(n � 1)
(3)

Kushler-Hurley (1992)

Cpk = Ĉpk

 
1 ± Z1�a/2p

2(n � 1)

!
(4)

Minitab

This formula, used in Minitab 16 and 17, is unique in that it takes The source for this equation is not clear.
It seems to be a modification of the for-
mula proposed by Bissell (Equation 3).
Minitab’s technical support is trying to
find a proper citation. This document
will be updated when more information
is available.

batch effects into consideration:

Cpk = Ĉpk ± Z1�a/2

vuut 1
N + (m/2)2 +

Ĉ2
pk

2n
(5)

Here, N is the total number of observations, m is the sigma tolerance
value (6 by default), n is the degrees of freedom (calculated as Â(ni �
1) by default), and ni is the subgroup size.

Web application for PCI interval estimation

An online tool for calculating the confidence interval of Cp and Cpk

or its lower bound inverse is available at https://westelastomer.
shinyapps.io/pci_confidence. A screenshot of the app is shown in
Figure 1. The user can specify whether they want to input the mea-
sured PCI (output: 100(1 � a)% confidence interval) or the desired
PCI (output: lower confidence bound for which the process will be
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capable 100(1 � a)% of the time). The second option also produces a
plot of the inverse function and a searchable table of values.

Figure 1: Screenshot of web application.

The web application uses Equations 1 and 4 for the calculations.
These were chosen because their lower bound inverses f�1(Cp) and
f�1(Cpk) are single-valued functions.

The application will load in any modern browser (including In-
ternet Explorer 9). The tool was developed using Shiny, a web appli-
cation framework for R. The source code is available on my GitHub
page (https://github.com/prettynumbers/cpk_app) for forking and
modification. Because of the usability limitations on shinyapps.io

(25 active hours per month on the free account), I recommend that
West host the application on their own server or upgrade to a paid
account if it is found to be popular.
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This document describes various statistical procedures for measuring
inter-rater reliability. These methods quantify the homogeneity in rat-
ings and can be used to show how well two methods of measurement
agree.

ANOVA gauge R&R

This method for determining the capability of a measurement sys-
tem utilizes a designed factorial experiment. The data from this
experiment is analyzed using the random effects model analysis
of variance (ANOVA). If there are a randomly selected parts and b
randomly selected operators, and each operator measures every part
n times, then the measurements (i = part, j = operator, k = measure-
ment) can be represented by the model

yijk = µ + Pi + Oj + (PO)ij + eijk

8
>><

>>:

i = 1, 2, . . . , a

j = 1, 2, . . . , b

k = 1, 2, . . . , n

(1)

With this model, the variance of any observation is V(yijk) = The experiment can easily be extended
to study different measurement systems
by adding an M` term and its two-way
and three-way interactions with Pi and
Oj.

s2
P + s2

O + s2
PO + s2 = s2

P + s2
Gauge. The gauge variability can be

decomposed into the repeatability variance component (s2) and
the gauge reproducibility (s2

O + s2
PO). It is common to compare the

estimate of gauge capability to the width of the specifications or the
tolerance band for the part that is being measured. This is called the
precision-to-tolerance (P/T) ratio:

P/T =
kŝGauge

USL � LSL
(2)

In Equation 2, popular choices for the constant k are k = 5.15 and
k = 6. The value k = 5.15 corresponds to the limiting value of the
number of standard deviations between bounds of a 95% tolerance
interval that contains at least 99% of a normal population, and k =

6 corresponds to the number of standard deviations between the
usual natural tolerance limits of a normal population. Values of the
estimated ratio P/T of 0.1 or less often are taken to imply adequate
gauge capability (Montgomery, 2009).
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Concordance correlation coefficient

The concordance correlation coefficient (rc) for measuring agreement
between continuous, normally-distributed variables X and Y is calcu-
lated as follows for an n-length data set: McBride (2005) suggests the following

descriptive scale for values of the
concordance correlation coefficient:rc =

2sxy

s2
x + s2

y + (x � y)2 (3)
Value of rc Strength of agreement
< 0.90 Poor
0.90 - 0.95 Moderate
0.95 - 0.99 Substantial
> 0.99 Almost perfect

Equation 3 is an estimate of the population concordance correlation
coefficient:

rc =
2rsxsy

s2
x + s2

y + (µx � µy)2 (4)

Just like the familiar Pearson correlation coefficient, a value of rc =

+1 corresponds to perfect agreement, a value of rc = �1 corresponds
to perfect negative agreement, and a value of rc = 0 corresponds to
no agreement.

Cohen’s kappa

Cohen’s kappa statistic (k) is a measure of agreement between
categorical variables X and Y. It is unique in that it takes into con-
sideration agreement by chance. Kappa can be used to compare the
ability of different raters to classify parts or defects into one of sev-
eral groups. It can also be used to assess the agreement between
alternative methods of categorical assessment when new techniques
are under study.

Kappa is calculated from the observed and expected frequencies
on the diagonal of a square contingency table. Suppose that there are
n parts on which X and Y are measured, and suppose that there are
g distinct categorical outcomes for both X and Y. Let fij denote the
frequency of the number of parts with the ith categorical response for
variable X and the jth categorical response for variable Y. Then the
frequencies can be arranged in the following g ⇥ g table:

Y = 1 Y = 2 · · · Y = g
X = 1 f11 f12 · · · f1g

X = 2 f21 f22 · · · f2g
...

...
...

. . .
...

X = g fg1 fg2 · · · fgg

The observed proportional agreement between X and Y is defined
using the diagonal values as:

p(a) =
1
n

g

Â
i=1

fii (5)
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and the expected agreement by chance is:

p(e) =
1
n2

g

Â
i=1

fi+ f+i (6)

where fi+ is the total for the ith row and f+i is the total for the ith Viera & Garrett (2005) suggest the
following descriptive scale for values of
Cohen’s kappa statistic:

column. The kappa statistic is:

k =
p(a)� p(e)

1 � p(e)
(7)

Value of k Strength of agreement
< 0 Less than chance
0.01 - 0.20 Slight
0.21 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.80 Substantial
0.81 - 0.99 Almost perfect

Cohen’s kappa is generally between 0 and 1, however negative
values are possible when there is less than chance agreement. For
ordinal data and partial scoring, it is possible to use a weighted form
of kappa (Cohen, 1968). When there are more than two categorical
variables being compared, one can use Fleiss’s kappa.

Bland-Altman plot

The Bland-Altman plot (also known as the Tukey mean-difference
plot) provides a quick, graphical method to determine if two raters or
test methods agree. Figure 1 shows an example of this plot:

Figure 1: Bland-Altman plot. One
observation in the lower-left corner is
outside the reference interval.

Each test method is performed on n paired samples. The mean of
the two tests is plotted on the horizontal axis and the difference is
plotted on the vertical axis, i.e. S(x, y) =

⇣
S1+S2

2 , S1 � S2

⌘
. The bias

of the two methods is the mean of these differences (Sy). A reference
interval known as the limits of agreement is often calculated as
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Sy ± 1.96s. However, this equation is not valid for smaller sample
sizes. The most accurate formula which can be used in any case is
(Hayes & Krippendorff, 2007):

Sy ± t0.05,n�1s

r
1 +

1
n

(8)

The limits of agreement provide insight into how much random
variation may be influencing the ratings or test methods. If the mea-
surements tend to agree, the differences between the two sets of ob-
servations will be near zero. If one rater or method is usually higher
or lower than the other by a consistent amount, the bias will be dif-
ferent from zero.
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This document covers procedures for testing the equality of two or
more means including t-tests, one-way ANOVA, and post-hoc proce-
dures.

How can we ensure that a certain product produced by multiple
manufacturing plants is actually the same? This question was the
motivation behind this final technical document of the series. Once
we can confirm that there is strong agreement between different mea-
surement systems at different sites,2 we can then perform statistical 2 Khan OA (July 17, 2015). Statistical

Procedures for Inter-Rater Reliability.
West Pharmaceutical Services Technical
Document.

tests to verify equal product quality attributes. The paper describes a
hypothesis testing approach to comparing product measurements. If
it is found that two or more sets of products that should be the same
are actually not equivalent, a closer inspection of the manufacturing
processes is warranted.

Testing the equality of two means

The most common method for testing H0 : µ1 = µ2 vs. H1 : µ1 6= µ2 is
the t-test. The observations in each group must follow a normal dis-
tribution. The statistic is calculated differently for equal and unequal The Mann-Whitney U test (Wilcoxon

rank-sum test) is the analogous non-
parametric test for testing whether
two samples come from the same pop-
ulation. It does not require that the
samples be normally distributed.

sample sizes and variances. The t-statistic is then compared to the
value of tcritical = t1�a,n (found in a table) to make a decision:

8
<

:
if t < tcritical then do not reject H0

if t � tcritical then reject H0

Equal sample sizes, equal variances

The t-statistic is calculated as:

t =
X1 � X2

sX1X2 /
p

n
(1)

where sX1X2 =
q

s2
X1

+ s2
X2

and the t-statistic has n = 2n � 2 degrees
of freedom.

Unequal sample sizes, equal variances

The t-statistic is calculated as:

t =
X1 � X2

sX1X2 ·
q

1
n1

+ 1
n2

(2)
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where sX1X2 =

r
(n1�1)s2

X1
+(n2�1)s2

X2
n1+n2�2 and the t-statistic has n =

n1 + n2 � 2 degrees of freedom

Equal or unequal sample sizes, unequal variances

Welch’s t-test is an adaptation of Student’s t-test for unequal vari-
ances. The t-statistic is calculated as:

t =
X1 � X2r

s2
1

n1
+

s2
2

n2

(3)

and the degrees of freedom are calculated as:

n ⇡

✓
s2

1
n1

+
s2

2
n2

◆2

s4
1

n2
1n1

+
s4

2
n2

2n2

(4)

Here, n1 = n1 � 1 and n2 = n2 � 1 are the degrees of freedom
associated with the two variance estimates.

Paired samples

When the same set of samples is used in both groups, we can do the
paired t-test to get more power. The t-statistic is calculated as:

t =
XD

sD/
p

n
. (5)

For this equation, the differences between all pairs must be calcu-
lated. The average (XD) and standard deviation (sD) of those dif-
ferences are used in the equation. The degrees of freedom for the
hypothesis test are calculated as n = n � 1.

Two One-Sided Tests (TOST)

In some cases, it is acceptable to conclude equivalence if the differ- Minitab 17 has the functionality to
do TOST under the menu heading
"Equivalence Tests."

ence of the two means falls between an upper and lower bound. The
null hypotheses for non-equivalence are:

H0,1 : µ1 � µ2  dL and H0,2 : µ1 � µ2 � dU

and the alternative hypothesis of equivalence is:

H1 : dL < µ1 � µ2 < dU

If we can assume that the two groups of normally-distributed
values have the same variance, the calculation of the two one-sided
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test statistics uses the following equations:

tL =
(X2 � X1)� dL

SE
(6)

tU =
(X2 � X1)� dU

SE
(7)

where the standard error is:

SE =

vuutÂn1
i=1

�
X1i � X1

�2
+ Ân2

j=1
�
X2j � X2

�2

n1 + n2 � 2

✓
1
n1

+
1
n2

◆
(8)

The critical value tcritical = t1�a,n1+n2�2 is used to make a two-part
decision:

8
<

:
if tL < tcritical and tU > tcritical then do not reject H0

if tL � tcritical or tU  tcritical then reject H0

Testing the equality of three or more means

When we are interested in testing the equality of more than two
means, we can perform a one-way analysis of variance (ANOVA).
In the special case of two groups, the F-test used in the ANOVA is
equivalent to the t-test (since F = t2). The hypothesis we are testing
is:

H0 : µ1 = µ2 = · · · = µk vs. H1 : at least one mean is different

The theory and procedure of the ANOVA are beyond the scope of
this document. The reader is encouraged to look at any introductory
statistics book for a discussion on this versatile test. It is relatively The Kruskal-Wallis one-way analysis

of variance is the analogous nonpara-
metric test for testing whether three
or more samples come from the same
population. It does not require that the
samples be normally distributed.

robust to small deviations from normality, however the assumption
of homoscedasticity (equal variance) must be satisfied. The ANOVA
cannot be used to determine which means are different if the null
hypothesis is rejected. Post-hoc testing procedures are therefore
necessary and are described in the next section.

Multiple comparisons

Figure 1: The overall confidence level
of a set of simultaneous inferences. The
blue and pink lines are for 95% and
90% confidence levels respectively.

Sometimes we are interested in considering a set of statistical infer-
ences simultaneously. It is not acceptable to sequentially perform
these tests without alteration as the probability of incorrectly reject-
ing the null hypothesis (type I error) increases exponentially. For
example, if we are interested in making 10 pairwise comparisons
between k = 5 groups and try to do a series of t-tests with indi-
vidual 95% confidence levels, our overall confidence level falls to
(95%)10 = 59.9%!
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To overcome this issue, multiple testing correction methods must
be used. This section covers the most commonly used procedures.
Except for the Bonferroni correction, all other methods are post-hoc
analyses and should only be run if the ANOVA procedure indicates
that the means are not equal. In calculating the test statistic for these
methods, the MSE is the mean squared error from the ANOVA out-
put.

Bonferroni correction

This is the simplest method for multiple comparisons. It does not
require an ANOVA to be run prior to performing the tests. The pro-
cedure involves a series of t-tests performed at an adjusted confi-
dence level of 100(1 � a⇤)% where a⇤ = a/k. While the individual
pairwise tests are performed at a higher confidence level, the overall
confidence level is still approximately 100(1 � a)%.

Tukey-Kramer (Tukey’s HSD) test

When doing all pairwise comparisons, this method is considered
the best available for unequal sample sizes. When samples sizes are
equal and confidence intervals are not needed Tukey’s test is slightly
less powerful than the Bonferroni correction, but the loss in power is
very small unless the groups are large. We are interested in testing
the hypothesis:

H0 : µi = µj vs. H1 : µi 6= µj

The test statistic is calculated as:

qobs =
Xi � Xj

SE
(9)

where SE =

r⇣
MSE

2

⌘ ⇣
1
ni
+ 1

nj

⌘
is the standard error. The critical

value qcritical = qa,k,N�k can be found in a table of values and is used
to make a decision for each pairwise comparison:

8
<

:
if |qobs| < qcritical then do not reject H0

if |qobs| � qcritical then reject H0

Dunnett’s test

When we are only interested in comparing k treatments against a
control (for a total of k + 1 groups), Dunnett’s test is the preferred
post-hoc analysis. Observations are allocated as n for each treatment
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and ncontrol = n
p

k for the control group. We are interested in testing For example, if we choose a total
sample size of N = 60 with k = 4
treatments, then each treatment should
have n = N/(k +

p
k) = 60/(4 +

p
4) =

10 observations and the control should
have ncontrol = n

p
k = 10

p
4 = 20

observations.

the hypothesis:

H0 : µi = µcontrol vs. H1 : µi 6= µcontrol

The test statistic is calculated as:

qobs =
Xcontrol � Xi

SE
(10)

where SE =

r
MSE

⇣
1

ncontrol
+ 1

ni

⌘
is the standard error. The critical

value qcritical = qa,k+1,N�k+1 can be found in a table of values and This is not the same qcritical as the one
for Tukey’s HSD test.is used to make a decision for each pairwise comparison with the

control:
8
<

:
if |qobs| < qcritical then do not reject H0

if |qobs| � qcritical then reject H0

Scheffé’s test

This is the most flexible multiple testing procedure as it allows for Some of the possible null hypotheses
for Scheffé’s test include:

H0 : µi = µj

H0 : µ3 �
µ1 + µ2

2
= 0

H0 :
µ3 + µ4 + µ5

3
�

µ1 + µ2

2
= 0

comparing any number of possible contrasts. If only pairwise com-
parisons are to be made, the Tukey-Kramer method will result in a
narrower confidence limit, which is preferable. In the general case
when many or all contrasts might be of interest, Scheffé’s test tends
to give narrower confidence limits and is therefore the recommended
method.

For an arbitrary contrast C = Âk
i=1 ciµi where Âk

i=1 ci = 0, the test
statistic is calculated as:

Sobs =

��Â ciXi
��

SE
(11)

where SE =

s

MSE
✓

Â
c2

i
ni

◆
is the standard error. The critical value

Scritical =
p
(k � 1) Fa,k�1,N�k is calculated and used to make a deci-

sion:
8
<

:
if Sobs < Scritical then do not reject H0

if Sobs � Scritical then reject H0
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